Interactive Networked Music --

Tapping into the Internet as an Acoustical / Musical Medium

Chris Chafe

Center for Computer Research in Music and Acoustics (CCRMA)

Stanford University

Networked ensembles Related Applications Experiment design Results

Future

Quantify effects of latency Find "best delay" Groundwork for further study Networked Studios & Stages

...interesting use of our theme as a magazine cover...

Listening quiz – the drums are where?

London—

Montreal

next studio?
Berkeley?
Denver
Sacramento?

Chicago

Bass & Sax at Stanford

NGI Jam Session Stanford <--> ?? (2002) Listening quiz – the drums are where?

London—

Montreal

next studio?
Berkeley?
Denver
Sacramento?

Chicago

Bass & Sax at Stanford

NGI Jam Session Stanford <--> ?? (2002)

London

ODrums are in Montreal

Bass & Sax at Stanford

NGI Jam Session Stanford <--> McGill Univ. (2002) Networked ensembles Related Applications Experiment design Results Future

Trio (May, 2004)
Stanford (bass guitar)
Victoria, BC (sitar)
Missoula, MT (elec. Violin)

Piano Duo (July, 2004) Stanford Banff, Alberta

Quartet (June, 2004)
Stanford (flute, elec. cello)
Stockholm (bass flute, piano)

Networked ensembles Related Applications Experiment design

Results

Future

Next gig?

Related Applications
Experiment design
Results
Future

Acoustical Monitoring for NOC's

NASA
Space Network Emulation
Meteor Crater (2004)

Related Applications

Experiment design Results Future

Acoustical Monitoring for NOC's

Related Applications

Experiment design Results Future

Acoustical Monitoring for NOC's

next...
"plucking the network"

Sets up acoustical waves traveling as fine-grained, interactive flows (Stanford <--> Seattle)

Related Applications

Experiment design Results Future

Acoustical Monitoring for NOC's

Experiment design Results
Future

Experiment Designed to
Determine Effect of Latency on
Ensemble Accuracy

Subjects = students and staff at Stanford (paired randomly)

Task = play rhythm accurately, keep an even tempo (no strategies given)

Interlocking rhythm

Sound

(2ms delay each direction, metronome cue = mm94)

Experiment design

Results Future

Delays: 0 - 77ms (each way) in 12 steps

Experiment 1 with 17 pairs of subjects

Experiment design

Results Future

Deceleration from longer delay but where does it start to cause trouble?

Sound

(77 ms delay each direction, metronome cue = mm90)

Results

Future

Results

Results Future

Human clappers at 65ms delay

Results Future

Acceleration vs. delay time $(r^2 = 0.98)$

Tempo slope = 0

Sweet Spot?

Delay = 11.5 ms

- @ Delay < 11.5 ms, 74 % of trials sped up
- @ Delay > 11.5 ms, 85% of trials slowed down

Tested two clappers holding a rhythm across different round-trip delays (ms).

50 100 150 (1ft = 1ms)

-- speed of light

(0.7c for network transmission)

Asymmetry

Best match: < 25ms = longest delay > 25 ms = mean of delays

Acoustical / Musical Media: air, water, earth, etc.

Future

Current Projects

Internet Reverberation with "Echo Construction" SlipStream Recording Technique Integration with Ethernet-based Audio for Home Use

Longer-term Goals
Home-to-home Music Collaboration
Interactive Immersive Audio Environments (games, etc.)
Concert-qualityTeleconference Audio

Collaborators / Supporters

McGill University
Internet2
Banff Centre for the Arts
NetworkSound, Inc.

NSF MediaX, Stanford OTL, Stanford